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ABSTRACT 
 
Current research in minefield detection indicates that operationally no single sensor technology will likely be 
capable of detecting mines/minefields in a real-time manner and at a performance level suitable for a forward 
maneuver unit.  Minefield detection involves a particularly wide range of operating scenarios and environmental 
conditions, which requires deployment of complementary sensor suites such as acoustic and ground penetrating 
radar sensors. To aid the sensor fusion required, we have focused on the development of a computationally efficient 
and robust detection algorithm applicable to a variety of these imaging sensors that exploits robust image processing 
techniques centered on meaningful target feature sets. This paper presents the detection technique, called the Ellipse 
Detector, emphasizing its robust architecture, and provides performance results for image data generated by 
complementary sensors. 
 
Keywords: mine detection, robust algorithms, ground penetrating radar imaging, acoustic imaging 
 

1. INTRODUCTION 
 
The detection and location of mines is a difficult problem that requires innovative algorithm development, including 
the fusion of information from complementary sensors. The Night Vision and Electronic Sensors Division (NVESD) 
has funded a 3-year algorithm effort as a step in solving this difficult problem. This effort began in October 2000, 
called the "Signal Processing and Algorithm Development for Robust Mine Detection Program" (SPAD), is being 
executed by SAIC with Arnold Williams as the Principal Investigator and George Maksymonko as the NVESD 
Contract Technical Representative. 
 
The key word in "Signal Processing and Algorithm Development for Robust Mine Detection Program" is "robust". 
SPAD is developing and integrating algorithms that are built upon robust techniques. For example, we are 
developing a robust "Ellipse Detector" applicable to the output of a variety of imaging sensors. Such a common 
detector will aid robustness and fusion. 
 
The Ellipse Detector1 is a fundamental building block for our fusion approach. At present, we are considering two 
fusion options. One option is a decision level fusion technique2 called the Piecewise Level Fusion Algorithm 
(PLFA). Such a technique is very robust and has been demonstrated on an earlier NVESD sponsored automatic 
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target recognition (ATR) program for vehicle detection and recognition.3  Our second option is to consider pixel 
level fusion, which is ably supported by the Ellipse Detector since it accurately estimates the ellipse center of the 
detected object. These centers can be exploited to register the pixels from images of diverse sensors, thereby, aiding 
pixel level fusion. 
 
Another aspect of robustness to be addressed by SPAD is to develop a method that adapts the detection and fusion 
parameters to the changing situation and environment. The inability of current ATR algorithms to adapt has been a 
major problem, resulting in non-robust systems that, at best, perform well on inputs similar to the training data but 
otherwise fail. We will use a technique called "model evolution"4 to implement adaptive algorithms. This technique 
has been developed over several years and has been demonstrated for detecting vehicular targets in a system called 
IA-Chameleon.5  
 
The SPAD effort is embodied in a hypothetical integrated detection algorithm shown in Figure 1. SPAD would be 
overly ambitious except that substantial software tools and proven ATR technologies are already available as shown 
in Figure 2. 
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Figure 1 Architecture of the robust detection algorithm 

 
Benefits Provided Technologies To Be Further Demonstrated 

The fundamental detection technique will be robust 
and easily computed.  

The Ellipse Detector is robust and is based on affine 
geometry, Canny edge detection, and Hough 
transforms as demonstrated on an NVL mine 
hunting SBIR and on SAR ground target detection. 

The fundamental detection technique will be 
integrated with an efficient adaptive technique that 
allows for changing scenarios and environments. 

The Ellipse Detector has a small well-defined set of 
parameters amenable to adaptive techniques that 
will be adapted through "model evolution" as 
demonstrated on the IA-Chameleon system. 
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The adaptive detection algorithm will allow fusion 
through multiple sensors or multiple looks of the 
same sensor. 

The Ellipse Detector has performed well for 
different sensors and applications. It is, therefore, an 
ideal fusion building block. The Piecewise Level 
Fusion Algorithm (PLFA) easily interfaces with 
different detection algorithms as demonstrated on an 
NVL SBIR where FLIR detector decisions and 
radar detector decisions were fused. 

The fusion technique, itself, will be adaptable to 
changing scenarios and environments.  

SAIC has developed an adaptive PLFA fusion 
technique by exploiting knowledge based systems 
technology as demonstrated on an Army Research 
Lab (ARL) SBIR.  

Techniques for evaluating algorithm performance 
and the performance of their feature sets will be 
exploited to speed algorithm development. 

We have previously developed many performance 
evaluation tools and techniques that analyze 
multidimensional data and estimate the Bayes error 
and other performance metrics, providing useful 
insights on NVL and many other data sets. 

Figure 2 Component technologies used in the development of the mine detection algorithm 

The following sections focus on the development and results for our Ellipse Detector. We point out the robust nature 
of this technique in order to indicate our current progress in building a robust mine detection algorithm applicable to 
a wide variety of imaging sensors. 
 

2. ELLIPSE DETECTOR STRUCTURE 
 
A key element in our approach to robust mine detection is the development of a detector applicable to a variety of 
imaging sensors. Figure 3 presents the Ellipse Detector and points out its robustness and wide applicability. 
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Figure 3 The Ellipse Detector exploits a Canny edge detector and a Hough transform with a priori physical 

constraints of the mine for robust detection of the mine boundary and center. 



The following steps summarize the Ellipse Detector:  
 
1. Edge detection: The Canny edge detector6 is used to extract mine edges. The Canny method finds edges by 
convolving the image with the first order derivative of a 2-D Gaussian mask. This produces a set of pixels and their 
gradients that lie on the edges of objects within the image as illustrated in the left lower panel of Figure 3. 
2. Ellipse fitting: This pairwise fitting is done for every two pixels on the edge. Use the pixel locations and the 
derivative information (the directions of the normal) to fit ellipses that pass through the two pixels as shown in the 
center panels of Figure 3. That is, each pair of pixels and their gradients generate a family of ellipses that pass 
through the pixel pair and are tangent to the normals of the gradients. 
3. Ellipse detection: Find eligible ellipses from the family based on prior information related to mine shapes and 
mine sizes. Construct a "hit table" based on the Hough Transform7 for these eligible ellipses. This eligibility is based 
on ellipse size (area should be within prescribed bounds and center should lie inside the image) and parameters 
(ratio of major and minor axis should be within prescribed bounds) as shown in the upper right panel of Figure 3.  
4. Mine location approximation: If the hit table of the Hough Transform satisfies the condition that the total number 
of hits and the percentages of hits in a region exceed some thresholds, a mine is detected. An bounding ellipse from 
the eligible ellipses is then selected and drawn that is the best fit to all the edges within the detection region as 
shown in the lower right panel of Figure 3. 
 
The ellipse detection method has the following advantages: 
 
1. Robustness: The ellipse detection method is robust since minimal information is required from the data. 
Sophisticated feature extraction tools and techniques such as segmentation are not necessary. The detector is not 
dependent on complete or smooth edges but only on pairwise roughly oriented pixels. One of the main drawbacks 
with many edge-based methods is that they fail when edges are fragmented, spurious, and missing due to clutter and 
obscuration. Since the Ellipse Detector accumulates information by a pairwise evaluation of pixels, it is robust with 
respect to the effects of clutter and obscuration. 
2. Pixels on Target: Resolution is a great concern when working with images. Many image detection techniques can 
require on the order of 50 - 100 pixels on target or even more if well defined boundaries are required. One advantage 
of the Ellipse Detector is that it appears to work well even with as few as 8 pixels on target. For example, the 

pairwise nature of the algorithm allows 8 pixels to cast as many as 28
2
8

=�
�

�
�
�

� detection votes in the hit table. 

3. Implicit fusion across spectral bands: Fusing information across spectral bands has many challenges such as the 
alignment and registration of the imagery. One of the advantages of our method is that it implicitly fuses and 
accumulates the ellipse information across spectral bands. When the Canny edge detector is applied to a spatial 
image for each frequency band, the hit table can accumulate this evidence across all the images. That is, steps 1 
through 3 of the Ellipse Detector that follows Figure 3 are repeated for each image, accumulating the hits in the hit 
table. Step 4 (the final detection decision) is then performed after all images have been processed. Thus, ellipse 
fitting can be done across spectral bands (images) through an implicit integration of pixel detections, allowing a 
seamless method of combining information across spectral bands. 
 

3. ELLIPSE DETECTOR DEVELOPMENT 
 
The Ellipse Detector is being successfully developed and tested on several sensors. The anecdotal results in this 
section illustrate the development and operation of the Ellipse Detector. While these results are anecdotal because of 
the limited sample size, the robustness of the detector is indicated due to its uniformly good results over a variety of 
sensors and images. We have found the Ellipse Detector effective on acoustic mine images produced by the 
University of Mississippi Laser Doppler Vibrometer (LDV)8, on radar mine images produced by the Planning 
                                                           
6 M. Yi, J. Koo, "Basic Image Processing Demos (for EECS20)", 6 April, 1996, 
http://eclair.eecs.berkeley.edu/~mayi/imgproc/index.html 
7 A. Rosenfeld and A. Kak, Digital Picture Processing, Volume 2, Second Edition, pp. 121-126, Academic Press, 
Orlando, FL, 1982 
8 J. Sabatier and N. Xiang, "Acoustic Technology for Mine Detection", Progress, Status and Management Report, 
National Center for Physical Acoustics, University of Mississippi, University, Mississippi  38677, September 15, 
1998 



Systems Incorporated (PSI) Ground Penetrating Radar (GPR)9, and on synthetic aperture radar (SAR) images of 
adjacent vehicular targets10. 
 
Figure 4 typifies Ellipse Detector results on tens of LDV Images. The detector has been able to reliably detect most 
mines with practically no false alarms. The edges found by the Canny edge detector are usually strong and form a 
boundary of the mine when it exists. Such bounding pixels do not generally exist for clutter only images. The LDV 
produces a down range/cross range image for a number of spectral bands. The "Raw Images" in Figure 4 are 
noncoherent sums of these images on a pixel basis over the entire spectral band from 80 to 300 Hz. 
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Figure 4 Typical Ellipse Detector results on LDV images 

As indicated in item 3 above of the "Ellipse Detector advantages" list, we have developed an Ellipse Detector that 
accumulates evidence over the individual spectral images and then makes a detection decision. This Ellipse Detector 
outputs the optimal spectral band for the detected mine from these collection of images as well as the bounding 
ellipse and ellipse center. Figure 5 illustrates the 3-D hit table, i.e., the 2-D table with an additional frequency 
dimension, and shows a typical output where the image is noncoherently summed only over the (115,140) Hz 
subband. This image is much improved relative to the image over the entire (60,300) Hz band shown in the bottom 
left image of Figure 9. 
 

                                                           
9 M. Bradley, M. Duncan, and R. McCummns, "GPR Processing Software -- User Guidelines", Planning Systems 
Incorporated, Long Beach, Mississippi, June 1999 
10 E. R. Keydel, S.W. Lee, and  J.T. Moore, "MSTAR extended operating conditions: a tutorial", Proc SPIE, Vol. 
2757, pp.228-242, Algorithms for synthetic Aperture Radar Imagery IV, April 1997 



L14Dw_BT05.mat: Raw Data Over Optimal Band With DC Subtraction, 1605 Hits
Hit Ratio 0.280447 at Position ( 4.13265 , 11.6239 ) and Band Width ( 115 , 140 ) Hz
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Figure 5 The Ellipse Detector fuses over the LDV frequency band to find the mine. 

We have also examined the Ellipse Detector over tens of GPR images. The GPR produces 3-D images as a function 
of range, cross range, and depth. We currently work with only 2-D GPR images produced by taking the maximum 
value with respect to depth over each pixel. A typical result is shown in Figure 6. Note that the mine is detected and 
that the hot spots visible to the left and the top right in the raw mine image have been correctly ignored due to their 
non-mine like spatial characteristics. Also note that, correctly, no mine (false alarm) is found in the bottom clutter 
image sequence of the figure. 
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Figure 6 Typical Ellipse Detector results on GPR images 
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The Ellipse Detector has also been applied to the two SAR images shown in Figure 7, each containing two adjacent 
vehicular targets11. As shown in Figure 8, three of the four targets were correctly detected. Note that in the bottom 
right image of Figure 8 the T62 was missed and the M60 was found instead. The particular orientation of the T62 in 
the image produces only a few weak pixels so the missed detection is not surprising.  
 
As in the previous cases discussed above for the LDV and GPR sensors, the Ellipse Detector algorithm itself was 
not changed. Only the parameters that reflect the physical target sizes were changed. The two tables in Figure 7 
illustrate the physical target characteristics and the derived parameter values used by the Ellipse Detector.  
 
Automatically detecting adjacent targets in SAR images is known to be a very difficult task. The good Ellipse 
Detector performance, despite this limited SAR data set, is especially gratifying since the algorithm developed for 
one application has been successfully applied with minimal changes to a completely different application. 
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TARGET CHARACTERISTICS
Target Type Width

(ft.)
Length

(ft.)
Length/Width Area

(sq. ft.)
BRDM2  7.5 19.0 2.53 142.5
BTR70  9.2 24.6 2.67 226.3

M60  7.9 22.6 2.86 178.5
T62 10.8 21.7 2.01 234.4

Derived Ellipse Parameters
Target Type Maximum Pixel

Distance (Ft.)
Smallest Area

(Sq. Ft.)
Largest Area

(Sq. Ft.)
Length/Width
(Lowest Limit)

Length/Width
(Highest Limit)

BRDM2 19 128 157 2.0 3.0
BTR70 25 204 249 2.0 3.0

M60 23 161 196 2.5 3.5
T62 22 211 258 1.5 2.5

 
Figure 7 Adjacent vehicular targets in SAR images 

 

                                                           
11 A. Williams, "Mine Detection and SAR Target Detection (Determining Algorithm Robustness)", viewgraph 
presentation, presented at SAIP IPT, 23 May 2000 
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Figure 8 Ellipse Detector results on adjacent vehicular targets in SAR images 

 
4. SIGNAL PROCESSING TECHNIQUES AND RESULTS 

 
We have found that some signal processing on the raw LDV and GPR sensor outputs improves image quality and, 
thereby, aids detection. This signal processing is most effective and robust if it directly exploits the physics of the 
sensor, background, and target phenomenologies. Since these phenomenologies are only interpretable as perceived 
through the sensors, this signal processing is inherently sensor dependent. These observations are generally true for 
all ATR systems. In this section, we describe some physics based pre-detection signal processing found useful for 
first the LDV data and then the GPR data. 
 
This pre-detection signal processing is implemented as predetectors in front of the Ellipse Detectors in Figure 1. Our 
current experimentation and past ATR experience indicates that these predetectors must be sensor dependent.  The 
structure and actual signal processing required also depends on the Ellipse Detector needs. We anticipate, however, 
that the sensor dependent signal processing required will be minimized due to the robustness of the Ellipse Detector. 
 
Figure 9 shows the need for DC correction and provides an example of its benefit on image quality. The top three 
plots in the figure represent mine data for three mines that have been visually characterized as good, fair, and bad, 
depending on the ability of a trained human to detect the mine. The horizontal axis represents the pixel position of a 
16x16 LDV image for a given frequency arranged in row order. The vertical axis represents the 21 frequencies (46 
for the Fair Mine) at which the image data was taken. That is, each plot has columns of signal strength (lighter is 
stronger) for a particular pixel over 21 (or 46) frequencies and rows of signal strength for a row-organized image at 
a particular frequency.   
 
The top left plot (Good Mine) shows the structure expected for a mine since it is spatially compact and exhibits 
some frequency selectivity. We should expect to see a few strong well defined, reasonably adjacent, segmented 
columns, corresponding to the spatially adjacent mine pixels with the segments indicating good frequency bands. As 
we proceed from Good Mine to Bad Mine, we see an increase in obscuring signal across an entire row whose 
strength varies from row to row. 



 
The LDV generates a complex signal at each frequency and pixel. By computing a complex mean across each row, 
we observe non-zero "DC terms" where the obscuration occurs. When these DC terms are subtracted row by row 
from the complex pixels, improved images generally result for each frequency. The two bottom images of Figure 9 
illustrate this improvement combined with the ability of the Ellipse Detector to select an optimal frequency subband 
for image formation. The improvement here is demonstrated on a mine data set that would be visually classified as 
between good and fair so the improvement is not as dramatic as on some of the poorer data sets. Nevertheless, 
improved image quality is apparent. 
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Figure 9 Image processing and subband image formation improves LDV image quality. 

The PSI GPR sensor is composed of 26 alternating antenna pairs in two banks.  The antenna pairs in the two banks 
are offset by a half pixel cross-track.  Since this GPR is a stepped frequency system, the initial data processing step 
is a Fourier transform that transforms the data into three-dimensional voxels of complex numbers.  That is, cross 
range sampling is provided by the antenna spacing, down range sampling by the forward motion of the system, and 
depth sampling by the Fourier transform output. Taking the maximum strength depth sample at each range/cross 
range pixel creates the top view image. The top row of Figure 10 shows that generating interpretable top view 
images requires signal processing before the Ellipse Detector is successfully employed as shown in the 
corresponding processed images in the bottom row. 
 



Preprocessed Mine Preprocessed Clutter

Processed Mine Processed Clutter

Mine Detected  

Figure 10 Raw PSI GPR output requires signal processing before mine detection. 

Our GPR signal processing that produces an interpretable image for the Ellipse Detector proceeds in several steps as 
illustrated by the images in Figure 11. All images are created by plotting the maximum strength sample at any depth 
in the down range/cross range positions. The top two images are the front and back normalized images produced 
separately from the two array banks. For each antenna pair, the normalization begins by computing the median 
strength along the line of motion for each depth. For each sample, the appropriate median is subtracted from the 
sample strength for the appropriate antenna and depth, which is then divided by the square root of this median. 
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Figure 11 GPR signal processing applied to improve image quality for Ellipse Detector input and human 
inspection. 

The normalized front and back images are seamlessly merged, using hyperbolic histogram equalization12, shown in 
the third image. This merging doubles the number of pixels on target over an individual front or back image. We 
found that the pixels surrounding the target could also be extracted from the noise. This allowed for even more 
pixels on target and better ellipse detection. Some images became very easy to detect using this method.  
 
The fourth image is the result of further processing on the third image to reduce salt-and-pepper noise for improved 
human inspection. The salt-and-pepper noise has been removed by using 2-D median filtering13. The Ellipse 
Detector is relatively immune to such salt-and-pepper noise, so both image 3 and image 4 are equally good inputs to 
the Ellipse Detector. The removal of this noise does, however, aid human detection. Note that the Ellipse Detector 
guided by mine spatial characteristics correctly ignores the hot spots to the left and the top right of the fourth image. 

                                                           
12 W. Frei, "Image enhancement by histogram hyperbolization", Comput. Graphics Image Processing,6, 1997, pp. 
286-294 
13 A. Rosenfeld and A. Kak, Digital Picture Processing, Volume 1, Second Edition, pp. 261-264, Academic Press, 
Orlando, FL, 1982 



This Ellipse Detector result, i.e., the ellipse bounding the mine, is shown in the top right most image of Figure 6, 
which is the same image as the third image of Figure 11. 
 

5. ELLIPSE DETECTOR PERFORMANCE VERSES HUMAN PERFORMANCE 
 
The Institute for Defense Analysis (IDA) has designed a blind test procedure and has performed an independent 
performance assessment of both the University of Mississippi (UM) Laser Doppler Vibrometer (LDV) and the 
Planning System Incorporated (PSI) Ground Penetrating Radar (GPR) sensors. A general description of the blind 
test procedure along with LDV test results are given in a paper14 and the results of the assessment based upon 
ground truth for both the LDV and GPR are summarized in some detail in an IDA table15 
 
The purpose of the IDA blind test was to assess the performance of the sensors themselves under human expert 
control. No automatic target recognizers (ATRs) were used during the blind test The detection results for the blind 
test are summarized as PD = 0.95 at PFA = 0.03 for the LDV and PD = 0.76 at PFA = 0.03 for the GPR. These results 
were obtained in the field at near real time with human involvement and human decision making. Some of this 
human involvement included exploiting various data displays and alternative sensor resolution based upon human 
judgement as permitted by the previously specified IDA procedure. Neither UM nor PSI knew the ground truth of 
the test site at the time that the blind tests were being conducted. 
 
In this section, we give the Ellipse Detector results in comparison to the UM and PSI blind test results obtained by 
IDA. At the time we obtained our Ellipse Detector results, we did not have the ground truth from the IDA table that 
we later used for scoring. The Ellipse Detector parameter values, fixed during our test, have been previously 
obtained on data different than the blind test data. 
 
Figure 12 shows the Ellipse Detector (ED) results on the 59 files (19 target files and 40 clutter files) used during the 
IDA blind tests on the LDV sensor. 
 

M denotes misdetection C denotes false alarm

TestSetApr99 Directory
L03_002  67 1543 M
L03_004  65 1247 M
L03_005  62 1365 M
L04_021  61 1168 M
L04_020  57 1173 M
L04_006  52  942 M
L04_003  51  801 M
L04_007  50  807 M
L03_017  50 1047 M
L03_013  48  663 M
L04_025  42  789 M
L03_022  41  710 M
L04_009  37  668 M
L03_027  37  419 M
L04_012  33  334 M
L03_025  33  381 M
L03_018  31  502 C
L04_013  30  657 M
L03_009  26  361 M
L05_001  25  307 C

L03_020  25  382 C
L03_010  25  285 C
L04_019  24  263 C
L03_015  23  244 C
L04_015  22  222 C
L03_014  22  310 C
L03_023  20  357 C
L03_012  20  422 C
L02_002  19  275 C
L03_021  18  211 C
L04_018  17  206 C
L03_028  17  367 C
L04_022  16  209 C
L03_011  16  203 C
L05_002  15  195 C
L04_017  15  189 C
L03_006  15  221 C
L04_008  14  203 C
L04_002  14  259 C
L03_008  14  133 C

L04_023  13  180 C
L04_011  13  197 C
L03_024  13  239 C
L04_024  12  358 M
L04_001  12  227 C
L02_001  11  226 C
L04_026  10  167 C
L04_005  10   54 C
L04_004  10  158 C
L03_019  10  198 C
L03_007  10  215 C
L03_001B 10  151 C
L04_014   8  178 C
L04_010   8  264 C
L02_003   8  164 C
L04_016   6  210 C
L03_026   6  189 C
L03_016   2  174 C
L03_003   2  327 C

 
Figure 12 Ellipse Detector performance on LDV blind test set 

                                                           
14 E. Rosen, K. Sherbondy, and J. Sabatier, “Performance Assessment of a Blind Test Using the University of 
Mississippi’s Acoustic/Seismic Laser Doppler Vibrometer (LDV) Mine Detection Apparatus at Fort A. P. Hill”, 
published in proceedings of 2000 SPIE conference, Orlando, FL 
15 Table available from E. Rosen of  IDA with NVESD permission. 



The columns in Figure 12 represent respectively: Column 1 – the UM file name, Column 2 – the number of edge 
points found by the Ellipse Detector that cause the maximum number of hits in the hit table, Column 3 – the 
maximum number of hits in a 3 by 3 by 5 region of the hit table, which is illustrated in Figure 5, and Column 4 the 
ground truth designation of mine (M) or clutter (C). The table entries have been sorted from highest to lowest value 
in Column 2, the Ellipse Detector decision metric used at the present time. When the decision threshold is set at 
greater than or equal to 26 for this metric, the Ellipse Detector has only one false alarm and one misdetection, giving 
PD = 18/19 = 0.95 at PFA = 1/40 = 0.03. 
 
Thus, the Ellipse Detector performance for the LDV is the same as the human performance for the blind test set. 
However, the Ellipse Detector used only coarse resolution output (about 4 inches resolution) while the human tests 
sometimes used finer resolution to confirm that certain images contained no mine. Also the Ellipse Detector made 
no use of contextual information that may have been perceived and exploited by the human operator. 
 
The Ellipse Detector was also run on the PSI GPR blind test data set. The 48 entries of the GPR test set shown in 
Figure 13 contained the same mines and background as 48 of the 59 LDV images shown in Figure 12. 
 

TestSetApr99 Directory (Common LDV and GPR Mines and Clutter)
LDV/GPR

Name
True Class

(IDA)
LDV
(UM)

LDV
(ED)

GPR
 (PSI)

GPR
(ED)

LDV/GPR
Name

True Class
 (IDA)

LDV
 (UM)

LDV
 (ED)

GPR
(PSI)

GPR
(ED)

L03_002/t145b M15 (2-in) M M M M L03_028/s150b,a,c BLANK C C C C
L03_004/t125b VS2.2 (1-in) M M C C L04_022/s210b,a,c BLANK C C C C
L03_005/t115b EM12 (1-in) M M C C L03_011/s55b,a,c BLANK C C C C
L04_021/t219b EM12 (2-in) M M M M L04_017/t259b BLANK C C C C
L04_020/t229b VS2.2 (2-in) M M M M L03_006/t105b BLANK C C C C
L04_006/t205b TMA4 (2-in) M M M M L04_008/s224b,a,c BLANK C C C C
L04_003/t175b VS2.2 (1-in) M M M M L04_002/t165b BLANK C C C C
L03_017/t40b TMA4 (2-in) M M M C L03_008/t85b BLANK C C C C
L03_013/s35b,a VS1.6 (1-in) M M M M L04_023/s200b,a,c BLANK C C C M
L04_025/s180b,c TM62P3 (2-in) M M M M L04_011/s254b,a,c BLANK C C C C
L03_022/s90b,a,c VS1.6 (3-in) M M C C L03_024/s110b,a,c BLANK C C C C
L03_027/s140b,c EM12 (1-in) M M M M L04_024/s190b,a,c TMA4 (6-in) C C C M
L04_012/s264b,c VS2.2 (4-in) M M M M L04_001/s160b,a,c BLANK C C C C
L03_025/s120b M21 (3-in) M M M M L04_026/s170b,a,c BLANK C C C C
L04_013/s275b M15 (3-in) M M M M L04_005/t195b BLANK C C C C
L03_009/t75b TM62M (6-in) M M M M L04_004/t185b BLANK C C C C
L03_020/s70b,a,c BLANK C C C C L03_019/t60b BLANK C C C C
L04_019/s239b,a,c BLANK C C C C L03_007/t95b BLANK C C C C
L03_015/t20b BLANK C C C C L03_001B/t155b BLANK C C C C
L04_015/t280b BLANK C C C C L04_014/s285b,a,c BLANK C C C C
L03_014/s25b,a,c BLANK C C C C L04_016/t270b BLANK C C C C
L03_023/s100b,a,c BLANK C C C C L03_026/s130b,a,c BLANK C C C M
L03_021/s80b,a,c BLANK C C C C L03_016/t30b BLANK C C C C
L04_018/t249b BLANK C C C C L03_003/t135b BLANK M C M C

 
 

C denotes a misdetection,  M  denotes a false alarm 

Figure 13 Detection performance summary on Ellipse Detector and human decisions for the LDV and GPR 

Of the 48 entries in Figure 13, 17 are targets and 31 are clutter as indicated in Columns 2 and 8 where target type 
and depth are indicated and "BLANK" indicates clutter. The number of LDV edges found by the Ellipse Detector on 
the LDV images are used to sort the entries in Figure 13 as in Figure 12. Columns 1 and 7 give the UM file 
designation followed by the PSI file designation for the common mine and background in the blind test set.  
 
Note that several GPR files can correspond to a single LDV file; hence the GPR designation s239b,a,c indicates 
three GPR files, corresponding to the single LDV file, L04_019. When several GPR files exist, the Ellipse Detector 
decision is a mine, M, if any of the files produce a mine present decision. This procedure is currently a simple 
expedient that will be examined more thoroughly in our multilook fusion studies. Columns 3 through 6 and 9 
through 12 indicate the decisions (M is mine and C is clutter) made by the procedure indicated in the column 
headers that represent, repectively, LDV (UM) - LDV human decision, LDV (ED)  - Ellipse Detector LDV decision, 
GPR (PSI) – GPR human decision, and GPR (ED) - Ellipse Detector GPR decision. 
 
The Ellipse Detector performance on the GPR test sets is PD = 13/17 = 0.76 at PFA = 2/31 = 0.06. While this 
performance is somewhat less than the human GPR performance of PD = 0.76 at PFA = 0.03, the difference 



represents only one additional sample being called a false alarm. Given this GPR performance and the LDV 
performance of the Ellipse Detector, the Ellipse Detector appears to be performing as well as a human expert. Note 
that the Ellipse Detector makes faster decisions than an expert can make and is currently using only coarse sensor 
information. We are continuing to investigate further improvements to the Ellipse Detector itself, and we believe 
that it will be an important component to our ultimate robust mine detector. 
 

6. SUMMARY AND CONCLUSIONS 
 
This paper presents the Signal Processing and Algorithm Development for Robust Mine Detection Program (SPAD) 
methodology, Ellipse Detector, and signal processing techniques applied to the mine detection task. The tools and 
techniques developed have focused on the robustness and multisensor requirements of the detection algorithm. The 
Ellipse Detector has been demonstrated to perform well on a variety of sensors. These sensors are acoustic, ground 
penetrating radar, and SAR. The SAR results used the Ellipse Detector, which is being developed for mine hunting, 
to detect adjacent vehicular targets.  
 
Although these results are anecdotal for any single sensor due to the small number of images, the consistently good 
performance over all the sensors provides confidence that the Ellipse Detector is robust and effective. The ability of 
the Ellipse Detector to seamlessly fuse multichannel LDV images across frequency has also been demonstrated. 
This fusion allows the selection of the optimal frequency band for image enhancement and feature extraction. 
 
The need for signal processing as a preprocessor to the Ellipse Detector has been shown for both the LDV and the 
GPR sensors. This signal processing is sensor dependent. The present results suggest that only relatively 
straightforward signal processing may be needed for the Ellipse Detector. In any case, the development and 
assessment of signal processing techniques is most effective when done in conjunction with the development of a 
specific detector such as the Ellipse Detector. 
 
We have shown through an independently developed blind test data set that the Ellipse Detector performance is 
currently comparable to human expert performance on the LDV and GPR sensor output. The current Ellipse 
Detector uses only a few physical features. As the need arises, additional features will be extracted and exploited. 
This exploitation of new features will be done judiciously since the Ellipse Detector, itself, should be kept as robust 
and sensor independent as possible. As resources permit, the Ellipse Detector will be applied to images from other 
sensors, e.g., other GPR and IR sensors. During the next fiscal year, we will start making these algorithms adaptive. 
 
The 3-year SPAD program is making considerable progress in its first year of work. For the remainder of this fiscal 
year, the focus is to quantify the Ellipse Detector in terms of receiver operating characteristic (ROC) curves for both 
the LDV and PSI GPR.sensors and to develop a multisensor fusion algorithm for their outputs. The Ellipse 
Detector's ability to fuse PSI GPR depth images similar to LDV multichannel fusion will also be examined.  


